Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Genes (Basel) ; 15(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38540333

ABSTRACT

The soil-borne pathogen Plasmodiophora brassicae is the causal agent of clubroot, a major disease in Chinese cabbage (Brassica rapa ssp. pekinensis). The host's resistance genes often confer immunity to only specific pathotypes and may be rapidly overcome. Identification of novel clubroot resistance (CR) from germplasm sources is necessary. In this study, Bap246 was tested by being crossed with different highly susceptible B. rapa materials and showed recessive resistance to clubroot. An F2 population derived from Bap246 × Bac1344 was used to locate the resistance Quantitative Trait Loci (QTL) by Bulk Segregant Analysis Sequencing (BSA-Seq) and QTL mapping methods. Two QTL on chromosomes A01 (4.67-6.06 Mb) and A08 (10.42-11.43 Mb) were found and named Cr4Ba1.1 and Cr4Ba8.1, respectively. Fifteen and eleven SNP/InDel markers were used to narrow the target regions in the larger F2 population to 4.67-5.17 Mb (A01) and 10.70-10.84 Mb (A08), with 85 and 19 candidate genes, respectively. The phenotypic variation explained (PVE) of the two QTL were 30.97% and 8.65%, respectively. Combined with gene annotation, mutation site analysis, and real-time quantitative polymerase chain reaction (qRT-PCR) analysis, one candidate gene in A08 was identified, namely Bra020861. And an insertion and deletion (InDel) marker (co-segregated) named Crr1-196 was developed based on the gene sequence. Bra013275, Bra013299, Bra013336, Bra013339, Bra013341, and Bra013357 in A01 were the candidate genes that may confer clubroot resistance in Chinese cabbage. The resistance resource and the developed marker will be helpful in Brassica breeding programs.


Subject(s)
Brassica rapa , Brassica , Plasmodiophorida , Brassica rapa/genetics , Plasmodiophorida/genetics , Plant Breeding , Brassica/genetics , Quantitative Trait Loci
2.
Eur J Pharmacol ; 971: 176528, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38556118

ABSTRACT

Hyperuricemic nephropathy (HN) is characterized by renal fibrosis and tubular necrosis caused by elevated uric acid levels. Ferroptosis, an iron-dependent type of cell death, has been implicated in the pathogenesis of kidney diseases. The objective of this study was to explore the role of ferroptosis in HN and the impact of a ferroptosis inhibitor, ferrostatin-1 (Fer-1). The study combined adenine and potassium oxonate administration to establish a HN model in mice and treated HK-2 cells with uric acid to simulate HN conditions. The effects of Fer-1 on the renal function, fibrosis, and ferroptosis-associated molecules were investigated in HN mice and HK-2 cells treated with uric acid. The HN mice presented with renal dysfunction characterized by elevated tissue iron levels and diminished antioxidant capacity. There was a significant decrease in the mRNA and protein expression levels of SLC7A11, GPX4, FTL-1 and FTH-1 in HN mice. Conversely, treatment with Fer-1 reduced serum uric acid, serum creatinine, and blood urea nitrogen, while increasing uric acid levels in urine. Fer-1 administration also ameliorated renal tubule dilatation and reduced renal collagen deposition. Additionally, Fer-1 also upregulated the expression levels of SLC7A11, GPX4, FTL-1, and FTH-1, decreased malondialdehyde and iron levels, and enhanced glutathione in vivo and in vitro. Furthermore, we first found that Fer-1 exhibited a dose-dependent inhibition of URAT1, with the IC50 value of 7.37 ± 0.66 µM. Collectively, the current study demonstrated that Fer-1 effectively mitigated HN by suppressing ferroptosis, highlighting the potential of targeting ferroptosis as a therapeutic strategy for HN.


Subject(s)
Cyclohexylamines , Ferroptosis , Hyperuricemia , Kidney Diseases , Phenylenediamines , Mice , Animals , Uric Acid , Hyperuricemia/drug therapy , Hyperuricemia/metabolism , Kidney Diseases/drug therapy , Fibrosis , Iron
3.
Int J Mol Sci ; 25(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38339202

ABSTRACT

Vernalization plays a crucial role in the flowering and yield of Chinese cabbage, a process intricately influenced by long non-coding RNAs (lncRNAs). Our research focused on lncFLC1, lncFLC2a, and lncFLC2b, which emerged as key players in this process. These lncRNAs exhibited an inverse expression pattern to the flowering repressor genes FLOWERING LOCUS C 1 (BrFLC1) and FLOWERING LOCUS C 2 (BrFLC2) during vernalization, suggesting a complex regulatory mechanism. Notably, their expression in the shoot apex and leaves was confirmed through in fluorescent in situ hybridization (FISH). Furthermore, when these lncRNAs were overexpressed in Arabidopsis, a noticeable acceleration in flowering was observed, unveiling functional similarities to Arabidopsis's COLD ASSISTED INTRONIC NONCODING RNA (COOLAIR). This resemblance suggests a potentially conserved regulatory mechanism across species. This study not only enhances our understanding of lncRNAs in flowering regulation, but also opens up new possibilities for their application in agricultural practices.


Subject(s)
Arabidopsis , Brassica , RNA, Long Noncoding , Arabidopsis/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , In Situ Hybridization, Fluorescence , Flowers/metabolism , Brassica/genetics , Gene Expression Regulation, Plant
4.
ChemSusChem ; : e202301607, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329414

ABSTRACT

2D metal-organic frameworks (MOFs) have emerged as potential candidates for electrocatalytic oxygen evolution reactions (OER) due to their inherent properties like abundant coordination unsaturated active sites and efficient charge transfer. Herein, a versatile and massively synthesizable self-etching assembly strategy wherein nickel-iron foam (NFF) acts as a substrate and a metal ion source. Specifically, by etching the nickel-iron foam (NFF) surface using ligands and solvents, Ni/Fe metal ions are activated and subsequently reacted under hydrothermal conditions, resulting in the formation of self-supporting nanosheet arrays, eliminating the need for external metal salts. The obtained 33 % NiFeMOF/NFF exhibits remarkable OER performance with ultra-low overpotentials of 188/231 mV at 10/100 mA cm-2 , respectively, outperforming most recently reported catalysts. Besides, the built 33 % NiFeMOF/NFF(+) ||Pt/C(-) electrolyzer presents low cell voltages of 1.55/1.83 V at 10/100 mA cm-2 , superior to the benchmark RuO2 (+) ||Pt/C(-) , implying good industrialization prospects. The excellent catalytic activity stems from the modulation of the electronic spin state of the Ni active site by the introduction of Fe, which facilitates the adsorption process of oxygen-containing intermediates and thus enhances the OER activity. This innovative approach offers a promising pathway for commercial-scale sustainable energy solutions.

5.
Plant Methods ; 20(1): 17, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291463

ABSTRACT

BACKGROUND: The low efficiency of genetic transformation in Chinese cabbage (Brassica rapa L. ssp. pekinensis) is the key problem affecting functional verification. Particle bombardment is a widely used method along with the Agrobacterium-mediated method. As a physical means, it has almost no restrictions on the type of host and a wide range of receptor types, which largely avoids the restriction of explants. The bombardment parameters, which include the number of bombardments, the bombardment pressure, and the bombardment distance, may affect the microspores' genetic transformation efficiency. RESULTS: The transformation efficiency was improved using the particle bombardment method under the combination of bombardment shot times (3, 4, 5) × bombardment pressure (900, 1100, 1350 psi) × bombardment distance (3, 6, 9 cm). The average viability of microspores in the treatment group ranged from 74.76 to 88.55%, while the control group was 88.09%. When the number of shot times was 4, the number of embryos incubated in the treatment group ranged from 16 to 236 per dish, and the control group had 117 embryos per dish. When the bombardment parameters of the biolistic method were 4 shot times-1350 psi-3 cm, 4 times-1100 psi-3 cm, and 4 times-900 psi-3 cm, they had high transient expression efficiency, and the average number of transformed microspores was 21.67, 11.67, and 11.67 per dish (3.5 mL), respectively. When the bombardment parameters were 4 times, 900 psi, and 6 cm, the highest genetically transformed embryos were obtained, and the transformation efficiency reached 10.82%. CONCLUSION: A new genetic transformation system with proper parameters for Chinese cabbage microspores was established using particle bombardment. This proper transformation system could provide a useful tool for the improvement of cultivar quality and the investigation of functional genes in Chinese cabbage.

6.
Small ; 20(10): e2306085, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37875668

ABSTRACT

Bimetallic metal-organic framework (BMOF) exhibits better electrocatalytic performance than mono-MOF, but deciphering the precise anchoring of foreign atoms and revealing the underlying mechanisms at the atomic level remains a major challenge. Herein, a novel binuclear NiFe-MOF with precise anchoring of Fe sites is synthesized. The low-crystallinity (LC)-NiFe0.33 -MOF exhibited abundant unsaturated active sites and demonstrated excellent electrocatalytic oxygen evolution reaction (OER) performance. It achieved an ultralow overpotential of 230 mV at 10 mA cm-2 and a Tafel slope of 41 mV dec-1 . Using a combination of modulating crystallinity, X-ray absorption spectroscopy, and theoretical calculations, the accurate metal sequence of BMOF and the synergistic effect of the active sites are identified, revealing that the adjacent active site plays a significant role in regulating the catalytic performance of the endmost active site. The proposed model of BMOF electrocatalysts facilitates the investigation of efficient OER electrocatalysts and the related catalytic mechanisms.

7.
Genes (Basel) ; 14(8)2023 08 11.
Article in English | MEDLINE | ID: mdl-37628664

ABSTRACT

Ogura cytoplasmic male sterility (CMS) is one of the important methods for hybrid seed production in cruciferous crops. The lack of a restorer of fertility gene (Rfo) in Brassica rapa L. restricts the development and utilization of its germplasm resources. In this research, Brassica napus with the Rfo gene was used to restore the fertility of Ogura CMS B. rapa with the golden heart trait. Through the distant cross of two B. rapa and four B. napus, six interspecific hybrid combinations received F1 seeds. The six combinations were different in seed receiving. By morphological observation and molecular marker-assisted selection (MAS), in F1, individuals containing the Rfo gene all appeared fertile, while those without it remained male-sterile. The pollen viability of the fertile individuals was measured, and the fertile lines of the six interspecific hybrid combinations were different (40.68-80.49%). Three individuals (containing both Rfo and GOLDEN genes) with the highest pollen vitality (≥60%) were backcrossed with fertile cytoplasmic B. rapa, resulting in a total of 800 plants. Based on the MAS, a total of 144 plants with GOLDEN but no Rfo were screened (18%). Moreover, through morphological investigation, one individual with normal cytoplasm, stable fertility but without the restoring gene Rfo, the GOLDEN gene, and morphological characteristics similar to those of B. rapa was obtained. These results increased the diversity of B. rapa germplasm and provided a new method for the utilization of CMS germplasm in Brassica crops.


Subject(s)
Brassica rapa , Gastropoda , Infertility , Humans , Animals , Brassica rapa/genetics , Fertility/genetics , Cytoplasm/genetics , Cytosol , Crops, Agricultural
8.
Front Plant Sci ; 14: 1147494, 2023.
Article in English | MEDLINE | ID: mdl-36998688

ABSTRACT

Vernalization is a phenomenon in which plants must undergo a period of continuous low temperatures to change from the vegetative growth stage to the reproductive growth stage. Chinese cabbage is a heading vegetable, and flowering time is an essential developmental trait. Premature vernalization leads to premature bolting, which causes a loss of product value and yield. While research into vernalization has provided a wealth of information, a complete understanding of the molecular mechanism for controlling vernalization requirements has not yet been elucidated. In this study, using high-throughput RNA sequencing, we analyzed the plumule-vernalization response of mRNA and long noncoding RNA in the bolting-resistant Chinese cabbage double haploid (DH) line 'Ju Hongxin' (JHX). A total of 3382 lncRNAs were identified, of which 1553 differentially expressed (DE) lncRNAs were characterized as plumule-vernalization responses. The ceRNA network revealed that 280 ceRNA pairs participated in the plumule-vernalization reaction of Chinese cabbage. Through identifying DE lncRNAs in Chinese cabbage and analyzing anti-, cis-, and trans-functional analysis, some candidate lncRNAs related to vernalization promoting flowering of Chinese cabbage and their regulated mRNA genes were found. Moreover, the expression of several critical lncRNAs and their targets was verified using qRT-PCR. Furthermore, we identified the candidate plumule-vernalization-related long noncoding RNAs that regulate BrFLCs in Chinese cabbage, which was interesting and different from previous studies and was a new discovery. Our findings expand the knowledge of lncRNAs in the vernalization of Chinese cabbage, and the identified lncRNAs provide rich resources for future comparative and functional studies.

9.
PeerJ Comput Sci ; 9: e1749, 2023.
Article in English | MEDLINE | ID: mdl-38192485

ABSTRACT

This article presents a novel parallel path detection algorithm for identifying suspicious fraudulent accounts in large-scale banking transaction graphs. The proposed algorithm is based on a three-step approach that involves constructing a directed graph, shrinking strongly connected components, and using a parallel depth-first search algorithm to mark potentially fraudulent accounts. The algorithm is designed to fully exploit CPU resources and handle large-scale graphs with exponential growth. The performance of the algorithm is evaluated on various datasets and compared with serial time baselines. The results demonstrate that our approach achieves high performance and scalability on multi-core processors, making it a promising solution for detecting suspicious accounts and preventing money laundering schemes in the banking industry. Overall, our work contributes to the ongoing efforts to combat financial fraud and promote financial stability in the banking sector.

10.
Materials (Basel) ; 15(24)2022 Dec 18.
Article in English | MEDLINE | ID: mdl-36556859

ABSTRACT

Oily sludge is recognized as hazardous waste. To reduce the potential danger and harmful factors of oily sludge, it is very important to analyze its environmental risk. In this paper, the characterization of oily sludge from Shengli Oilfield in China was tested experimentally, including the composition content, particle size, microscopic morphology, heavy metal content, organic composition, inorganic composition, and thermogravimetric analysis, which were used to analyze environmental risks. The results show that the oil content of oily sludge is as high as 10.3%, which will cause serious pollution. It is calculated that China can recover 772.5 million liters of oil and reduce 553.9 million kg of carbon emissions compared with incineration in one year, if the oily sludge can be managed effectively. The content of heavy metals such as Ba, Zn, Cr, As, Ni, Se, Be, and Hg in oily sludge exceeds the standard. It will restrain the self-healing ability of soil, pollute groundwater, and endanger animals and plants. The organic matter of oily sludge is concentrated in C11 to C29. It contains a large amount of benzene series and polycyclic benzene hydrocarbons, which can lead to cancer in the human body. Inorganic substances in oily sludge are mixed with some additives, which can not only reduce the toxicity of heavy metals, but also be used as building materials. The median particle size D50 of oily sludge is 0.91 µm, and it spreads all over the narrow pores. Generally, it needs to be treated under high temperature conditions, which will cause secondary pollution to the environment. The research content of this paper provides a theoretical reference for the management of oily sludge.

11.
Genes (Basel) ; 13(11)2022 11 10.
Article in English | MEDLINE | ID: mdl-36360321

ABSTRACT

Chinese cabbage, which is a cold season crop, can still be damaged at an overly low temperature. It is crucial to study the mechanism of the resistance to low temperature of Chinese cabbage. In this study, the Chinese cabbage 'XBJ' was used as the material, and nine different low temperatures and control samples were treated. Using RNA-seq and lignin content determination, we analyzed 27 samples, and the stained sections of them were observed. A total of 8845 genes were screened for the WGCNA analysis, yielding 17 modules. The GO and KEGG analyses of the modules was highly associated with a low-temperature treatment. The pathways such as 'starch and sucrose metabolism' and 'plant hormone signal transduction' were enriched in modules related to low temperature. Interestingly, L-15DAT-associated MEcoral2 was found to have 14 genes related to the 'lignin biosynthetic process' in the GO annotation. The combination of the determination of the lignin content and the treatment of the stained sections showed that the lignin content of the low-temperatures samples were indeed higher than that of the control. We further explored the expression changes of the lignin synthesis pathway and various genes and found that low temperature affects the expression changes of most genes in the lignin synthesis pathway, leading to the speculation that the lignin changes at low temperature are a defense mechanism against low temperatures. The 29 BrCOMT gene sequence derived from the RNA-seq was non-conserved, and eight BrCOMT genes were differentially expressed. This study provides a new insight into how lignin is affected by low temperature.


Subject(s)
Brassica , Lignin , Lignin/genetics , Temperature , Gene Expression Regulation, Plant , Transcriptome/genetics , Gene Expression Profiling , Brassica/genetics , China
12.
Int J Mol Sci ; 23(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36293299

ABSTRACT

In plants, the accumulation of carotenoids can maintain the balance of the photosystem and improve crop nutritional quality. Therefore, the molecular mechanisms underlying carotenoid synthesis and accumulation should be further explored. In this study, carotenoid accumulation differed significantly among parental Brassica rapa. Genetic analysis was carried out using the golden inner leaf '1900264' line and the light-yellow inner leaf '1900262' line, showing that the golden inner leaf phenotype was controlled by a single dominant gene. Using bulked-segregant analysis sequencing, BraA09g007080.3C encoding the ORANGE protein was selected as a candidate gene. Sequence alignment revealed that a 4.67 kb long terminal repeat insertion in the third exon of the BrGOLDEN resulted in three alternatively spliced transcripts. The spatiotemporal expression results indicated that BrGOLDEN might regulate the expression levels of carotenoid-synthesis-related genes. After transforming BrGOLDEN into Arabidopsis thaliana, the seed-derived callus showed that BrGOLDENIns and BrGOLDENDel lines presented a yellow color and the BrGOLDENLdel line presented a transparent phenotype. In addition, using the yeast two-hybrid assay, BrGOLDENIns, BrGOLDENLdel, and Brgoldenwt exhibited strong interactions with BrPSY1, but BrGOLDENDel did not interact with BrPSY1 in the split-ubiquitin membrane system. In the secondary and 3D structure analysis, BrGOLDENDel was shown to have lost the PNFPSFIPFLPPL sequences at the 125 amino acid position, which resulted in the α-helices of BrGOLDENDel being disrupted, restricting the formation of the 3D structure and affecting the functions of the protein. These findings may provide new insights into the regulation of carotenoid synthesis in B. rapa.


Subject(s)
Arabidopsis , Brassica rapa , Brassica rapa/genetics , Brassica rapa/metabolism , Genes, Dominant , Carotenoids/metabolism , Arabidopsis/genetics , Amino Acids/genetics , Ubiquitins/genetics
13.
Plants (Basel) ; 11(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36079630

ABSTRACT

Brassica rapa is one of the most important leafy vegetables worldwide, and has a long history of cultivation. However, it has not been possible to completely control the damage of turnip mosaic virus (TuMV), a serious virus in B. rapa, to production. In this study, the genome-wide identification and expression detection of eIF family genes from B. rapa in response to TuMV resistance were analyzed, including the identification of eIF family genes, chromosomal distribution, three-dimensional (3D) structure and sequence logo analyses, and the expression characterization as well as differential metabolite analysis of eIF family genes in resistant/susceptible lines, which may further prove the whole-genome tripling (WGT) event in B. rapa evolution and provide evidence for the functional redundancy and functional loss of multicopy eIF genes in evolution. A qRT-PCR analysis revealed that the relative expressions of eIF genes in a susceptible line (80461) were higher than those in a resistant line (80124), which may prove that, when TuMV infects host plants, the eIF genes can combine with the virus mRNA 5' end cap structure and promote the initiation of virus mRNA translation in the susceptible B. rapa line. In addition, the metabolite substances were detected, the differences in metabolites between disease-resistant and disease-susceptible plants were mainly manifested by altered compounds such as flavonoids, jasmonic acid, salicylic acid, ketones, esters, etc., which inferred that the different metabolite regulations of eIF family genes and reveal the resistance mechanisms of eIF genes against TuMV in brassica crops. This study may lay a new theoretical foundation for revealing eIF family gene resistance to TuMV in B. rapa, as well as advancing our understanding of virus-host interactions.

14.
Planta ; 256(4): 66, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36036325

ABSTRACT

MAIN CONCLUSION: By constructing an F2 population, a new potential dominant resistance gene to TuMV in Brassica rapa was mapped and identified. Brassica rapa is the most widely grown vegetable crop in China, and turnip mosaic virus (TuMV) is a great threat to its production. Hence, it is a very important work to excavate more and novel resistance genes in B. rapa. In this study, the resistant line B80124 and the susceptible line B80450 were used to construct the F2 populations, and through genetic analysis, the resistance to TuMV was found to be controlled by a dominant gene. Bulked segregant analysis sequence (BSA-seq) was used for the primary mapping, and an intersection (22.25-25.03 Mb) was obtained. After fine mapping using single nucleotide polymorphisms (SNP) markers, the candidate region was narrowed to 330 kb between the SNP markers A06S11 and A06S14, including eight genes relating to disease resistance. Using the transcriptome analysis and sequence identification, BraA06g035130.3C was screened as the final candidate gene, and it contained two deletion mutations, leading to frameshift in the susceptible line B80450. In addition, the phylogenetic analysis, hydrophilia and hydrophobicity analysis, subcellular location prediction analysis, amino acid bias analysis, and 3D modeling structures of BraA06g035130.3C were conducted to predict its functions. This study was conducive to the identification of a new TuMV resistance gene in B. rapa, which is of important scientific significance and application value for the improvement of TuMV resistance traits and molecular design breeding for Brassica crops.


Subject(s)
Brassica rapa , Genes, Dominant , Phylogeny , Plant Diseases , Potyvirus
15.
PeerJ ; 10: e13427, 2022.
Article in English | MEDLINE | ID: mdl-35637719

ABSTRACT

High temperatures have a serious impact on the quality and yield of cold-loving Chinese cabbage, which has evolved to have a unique set of stress mechanisms. To explore the relationship between these mechanisms and the heat-tolerance of Chinese cabbage, the physiological indicators of the heat-tolerant '268' line and heat-sensitive '334' line were measured. Under heat stress, the proline (Pro), soluble sugar (SS), and superoxide dismutase (SOD) indexes of the '268' line increased significantly. When additionally using transcriptome analysis, we found that the identified 3,360 DEGs were abundantly enriched in many metabolic pathways including 'plant hormone signal transduction', 'carbon metabolism', and 'glycolysis/gluconeogenesis'. Dynamic gene expression patterns showed that HKL1 in Cluster 15 may be a key factor in the regulation of sugar homeostasis. The interaction network screened four ABA-related genes in Cluster 15, suggesting that high temperatures lead to changes in hormonal signaling, especially an increase in ABA signaling. Compared with the '334' line, the expressions of Prx50, Prx52, Prx54, SOD1, and SOD2 in the '268' line were significantly upregulated, and these genes were actively involved in the reactive oxygen species (ROS) scavenging process. In summary, our results revealed the relationship between plant heat tolerance, physiology, and biochemistry and may also provide ideas for the future development of high-quality and heat-tolerant Chinese cabbage germplasm resources.


Subject(s)
Brassica rapa , Brassica , Brassica rapa/genetics , Transcriptome/genetics , Brassica/genetics , Heat-Shock Response/genetics , Gene Expression Profiling
16.
Planta ; 255(6): 126, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35575830

ABSTRACT

MAIN CONCLUSION: Four heterotic QTL and a heterozygous segment for plant weight were identified by Graded Pool-Seq, QTL-seq and traditional genetic linkage analysis in heading Chinese cabbage. Heading Chinese cabbage (Brassica rapa L. spp. pekinensis) is a cross-pollinated leafy vegetable with significant heterosis. The use of heterosis is important for breeding high-yield Chinese cabbage hybrids. However, the formation and mechanism of heterosis have not been studied. We dissected the molecular mechanism of heterosis of yield-related traits in Chinese cabbage. An F1 hybrid with high-parent heterosis of yield-related traits was selected and self-pollinated to generate segregating F2 populations. QTL-seq, Graded Pool-seq (GPS), and traditional genetic linkage analysis were used to identify four heterotic quantitative trait loci (QTL) for plant weight: qPW1.1, qPW5.1, qPW7.1, and qPW8.1. Traditional genetic linkage analysis over two years showed that qPW8.1, located in marker A08_S45 (18,172,719) and A08_S85 (18,196,752), was mapped to a 23.5 kb genomic region. QTL qPW8.1 explained 8.6% and 23.6% of the phenotypic variation in plant weight and the total numbers of head leaves, respectively, and contained a heterozygous segment that might control the heterosis of plant weight. The qPW1.1 made an 11.7% phenotypic contribution to plant weight. The qPW7.1 was sensitive to environmental influence and explained 10.7% of the phenotypic variance. QTL qPW5.1 had a significant signal and was located in a genetic region near the centromere showing high heterozygosity. The "pseudo-overdominance" and "synergistic allelic" effects from parent line "XJD4" appear to play an important role in heterosis for plant weight in Chinese cabbage. These results provide a basis for an improved understanding of the molecular mechanism of yield-related traits and their heterosis.


Subject(s)
Brassica rapa , Brassica , Brassica/genetics , Brassica rapa/genetics , China , Chromosome Mapping , Genetic Linkage , Hybrid Vigor/genetics , Plant Breeding
17.
RSC Adv ; 12(3): 1628-1637, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35425179

ABSTRACT

Polycaprolactone (PCL) has been widely applied for its excellent physicochemical properties, but it also has common problems with biopolymers. It is important to investigate energy-efficient polymerization crafts and composite catalytic systems in the ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) to prepare high-performance PCL matrix composites. In this study, a composite catalytic system of modified halloysite nanotubes loaded with stannous chloride (APTES-P-h-HNTs-SnCl2) was successfully synthesized via hydroxylation, calcination, silane coupling agent modification and physical loading. It was used to catalyze the microwave-assisted in situ ROP of ε-CL to synthesize PCL matrix nanocomposites with modified halloysite nanotubes (PCL-HNTs). The structure, morphology, polymerization, thermal properties and electrochemical performance of products were subsequently investigated. The results show that PCL-HNTs have been successfully synthesized with connected petal-like and porous structures. Compared with PCL, the film-forming and thermal properties of PCL-HNTs have been significantly improved. Moreover, PCL-HNTs have a potential application value in the field of solid polymer electrolytes (SPEs).

18.
Sci Rep ; 12(1): 6308, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35428824

ABSTRACT

Chinese cabbage that prefers cold conditions is also affected by low-temperature stress, such as the accumulation of leaf anthocyanins. Research on anthocyanin biosynthesis and regulation mechanisms has made great progress. However, research on anthocyanin accumulation for resistance to biological and non-biological stress is still lacking. To study the relationship between anthocyanin accumulation of Chinese cabbage and resistance under low-temperature conditions, RNA sequencing (RNA-seq) was performed on Chinese cabbage 'Xiao Baojian' grown at a low temperature for four time periods and at a control temperature for five time periods. In Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, 7954 differentially expressed genes (DEGs) were enriched, of which 587 DEGs belonged to "biosynthesis of other secondary metabolites." Gene temporal expression patterns were used to discover enriched genes related to phenylpropanoid biosynthesis; flavonoid biosynthesis and anthocyanin biosynthesis pathways were found in cluster 1. The interaction networks were constructed, and hub genes were selected, showing that flavonoid biosynthesis pathway genes (DFR, ANS, F3H, FLS1, CHS1, CHS3, and TT8) and defense mechanisms-related genes (DFR, SNL6, and TKPR1) interact with each other. Anthocyanin biosynthesis DEGs in Chinese cabbage were evaluated under low-temperature conditions to map the relevant pathways, and expression maps of transcription factors in the flavonoid pathway were created at various periods. Low temperature upregulated the expression of genes related to anthocyanin biosynthesis. Taken together, our results provide further analysis of the relationship between plant anthocyanin synthesis and stress resistance and may also provide further insights for the future development of high-quality color and cold-tolerant Chinese cabbage germplasm resources.


Subject(s)
Brassica rapa , Brassica , Anthocyanins , Brassica/genetics , Brassica/metabolism , Brassica rapa/genetics , Brassica rapa/metabolism , China , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Temperature , Transcriptome
19.
Genes (Basel) ; 13(2)2022 01 31.
Article in English | MEDLINE | ID: mdl-35205328

ABSTRACT

Chinese cabbage (Brassica rapa) is a major vegetable crop in China. The accumulation of anthocyanins improves the quality and flavor of Brassica crops and is beneficial for human health. There has been great research interest in breeding purple Chinese cabbage, for which it is necessary to study the key genes and mechanisms of anthocyanin accumulation. Through distant hybridization between purple mustard (Brassica juncea) and green Chinese cabbage (B. rapa), purple Chinese cabbage plants were obtained. Furthermore, the Dark_Pur gene was cloned in the purple Chinese cabbage plants, which came from purple mustard and may be responsible for the purple phenotype in purple Chinese cabbage plants. Through particle bombardment of isolated microspores from Chinese cabbage to transform the Dark_Pur gene, the transformed purple Chinese cabbage plant was obtained, thus verifying the function of the Dark_Pur gene. To further study the Dark_Pur gene regulatory mechanism of anthocyanin accumulation in Chinese cabbage, the purple/green Chinese cabbage lines and purple/green mustard lines were subjected to transcriptome-metabolome analysis. Three stages (cotyledon, seedling, and large-leaf stages) of the purple/green Chinese cabbage lines and purple/green mustard lines were selected for analysis. The results indicated that the expression level of the transcription factor genes BraA09g028560.3C, BraA03g019460.3C, and BraA07g035710.3C may be induced by the Dark_Pur gene and they play an important role in purple Chinese cabbage, and BjuB010898 and BjuO006089 may be responsible for anthocyanin accumulation in mustard. Studying the structural genes of the purple Chinese cabbage showed that PAL, C4H, 4CL, CHS, CHI, F3H, F3'H, FLS, DFR, ANS, and UGT were up-regulated in three growth periods. There were 22 and 10 differentially expressed metabolites (DEMs) in seedling and large-leaf stages between purple/green Chinese cabbage, respectively, and 12 and 14 differentially expressed metabolites (DEMs) in seedling and large-leaf stages between purple/green mustard, respectively, which may indicate that the Dark_Pur gene from purple mustard greatly regulates anthocyanin accumulation in purple Chinese cabbage. This study provides a foundation for further elucidating anthocyanin regulation.


Subject(s)
Anthocyanins , Brassica rapa , Brassica rapa/genetics , Brassica rapa/metabolism , Gene Expression Regulation, Plant , Metabolome , Mustard Plant/genetics , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism , Seedlings/genetics , Transcriptome/genetics
20.
Genome ; 65(2): 105-113, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34648727

ABSTRACT

This study evaluated the genotyping by sequencing (GBS) protocol for fingerprinting Brassica rapa, and the data derived were more reliable than the re-sequencing data of B. rapa. Of the 10 enzyme solutions used to analyze the numbers of genotypes and single-nucleotide polymorphisms (SNPs) in B. rapa, five solutions showed better results, namely, A (HaeIII, 450-500 bp), E (RsaI+HaeIII, 500-550 bp), F (RsaI+HaeIII, 500-600 bp), G (RsaI+HaeIII, 'All' fragment), and J (RsaI+EcoRV-HF®, 'All' fragment). The five enzyme solutions showed less than 40% similarity in different individuals from various samples, and 90% similarity between two individuals from one sample. The E enzyme solution was the most suitable for fingerprinting B. rapa, revealing well-distributed SNPs in the whole genome. Of the 82 highly inbred lines and 18 F1 lines of B. rapa sequenced by GBS in the E enzyme solution, known parents of 10 F1 lines were verified, and male parents were discovered for 8 F1 lines that had only known female parents. This study provides a valuable method for screening parents for F1 lines in B. rapa for the efficient evaluation of GBS with varied library construction strategies.


Subject(s)
Brassica rapa , Plant Breeding , Brassica rapa/genetics , Chromosome Mapping , Genome, Plant , Genotype , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...